

KRAS IS THE MOST COMMON DRIVER MUTATION IN NSCLC

KRAS G12C is a key oncogenic mutation in NSCLC^{1,2}

Targeted therapy is not currently available for patients with *KRAS* mutations⁶ *KRAS* mutations are prognostic for poor survival in patients with NSCLC^{7,8,*}

KRAS^{G12C} mutant protein promotes oncogenic signaling, supporting cancer cell growth and survival^{9,10}

KRAS cycles between inactive (GDP-bound) and active (GTP-bound) states, serving as an on/off molecular switch to regulate downstream signaling pathways^{9,14}

The KRAS G12C mutation favors the active form of the KRAS mutant protein, supporting cancer cell growth and survival⁹⁻¹¹

Amgen is committed to investigating KRAS^{G12C} as a potential approach in NSCLC

*Based on two retrospective studies, the first study analyzed outcomes for 179 patients with surgically resected NSCLC from the University of Michigan Health System between 1991 and 2007.⁷ The second study analyzed outcomes for 129 patients with advanced NSCLC treated with chemotherapy at the Department of Pneumology University Hospital Pilsen between 2006 and 2015.⁸

AKT, protein kinase B; ALK, anaplastic lymphoma kinase; BRAF, proto-oncogene B-Raf; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; GAP, GTPase-activating protein; GDP, guanosine diphosphate; GEF, guanine nucleotide exchange factor; GTP, guanosine triphosphate; HER2, human epidermal growth factor receptor 2; KRAS, Kirsten rat sarcoma; MEK, mitogen-activated protein kinase kinase; MET, mesenchymal-to-epithelial transition; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NSCLC, non-small cell lung cancer; NTRK1, neurotrophic tyrosine receptor kinase 1; Pi, inorganic phosphate; PiRA, hosphoinositide 3-kinase; PiK3CA, phosphoinositide 3-kinase, catalytic, alpha polypeptide; RAF, rapidly accelerated fibrosarcoma; RAL, Ras-like; RET, rearranged during transfection; ROS1, c-ros oncogene 1; RTK, receptor tyrosine kinase.

Biomarker testing is critical for identifying driver mutations in NSCLC

Identification of driver mutations may allow for targeted therapeutic interventions that lead to *improved patient outcomes*^{15,16}

Guideline Recommendations for Biomarker Testing

*NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®).

Despite guideline recommendations, many patients do not receive testing for biomarkers or appropriate targeted therapy²⁰⁻²² Are you testing for biomarkers in your patients with NSCLC?

Considerations for sample collection and selection of testing platform

Sample Collection				Single-Gene vs Multigene Platforms		
	Tissue Biopsy	Liquid Biopsy		[Single Gene (eg, PCR)	Multigene (eg, NGS)
METHOD	Gold standard; tissue extracted from primary tumor ^{23,24}	Blood sample containing cell-free DNA ^{23,24}		METHOD	Detects prespecified mutations ²⁵	Detects multiple biomarkers ²⁹
TUMOR Heterogeneity	Limited to composition of tumor biopsies ^{72,24}	Captures tumor heterogeneity from primary tumors and metastases ^{23,24}	AS	GENES SESSED	A single gene of interest ²⁵	Multiple genes in targeted panels ²⁹
SAMPLE Collection	Invasive with possible complications ²³	Minimally invasive blood sample allows monitoring throughout disease ^{23,24}	TURN	AROUND TIME	1–7 days ^{24,27}	7-20 days ²⁶
SAMPLE CONSIDERATIONS	Insufficient tumor tissue in some samples ^{22,25}	Not all tumors shed sufficient DNA for detection ⁷⁵		COST	Lower ²⁸	Higher ⁷⁸
SAMPLE Integrity	Sample processing may result in reduced quality of results ²³	Collection method may require faster processing to ensure sample integrity ²⁵		L		

Liquid biopsy may be used when insufficient tissue is available or when the patient is not medically fit for invasive tissue sampling²⁵

KRAS testing can be performed as part of a multigene panel or as a single-gene test^{17,19}

Learn more at FindKRASG12C.com

AMP, Association for Molecular Pathology; ASCO, American Society of Clinical Oncology; CAP, College of American Pathologists; FFPE, formalin-fixed paraffin-embedded; IASLC, International Association for the Study of Lung Cancer; NCCN, National Comprehensive Cancer Network; NGS, next-generation sequencing; NTRK, neurotrophic tyrosine receptor kinase; PCR, polymerase chain reaction; PD-L1, programmed cell death ligand 1; TMB, tumor mutational burden

